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Abstract. On non-commutative spacetime, the standard model (SM) allows new, usually SM forbidden,
triple gauge boson interactions to occur. In this letter we propose the SM strictly forbidden Z → γγ and
Z → gg decay modes coming from the gauge sector of the non-commutative standard model (NCSM) as
a place where non-commutativity could be experimentally discovered.

In this article we consider strictly SM forbidden decays
coming from the gauge sector of the NCSM which could be
probed in high energy collider experiments. This sector is
particularly interesting from the theoretical point of view.
It is the place where different models show the greatest dif-
ferences. In particular there are models that do not require
any new triple gauge boson interactions. This depends on
the choice of representation. It is, however, important to
emphasize that generically one should expect triple boson
interactions. We will in particular argue that a model that
does have new triple gauge boson interactions is natural
as an effective theory of non-commutativity. Our main re-
sults are summarized in (17)–(19).

The idea that coordinates may not commute can be
traced back to Heisenberg. A simple way to introduce a
non-commutative structure into spacetime is to promote
the usual spacetime coordinates x to non-commutative
(NC) coordinates x̂ with [1]

[x̂µ, x̂ν ] = iθµν , [θµν , x̂ρ] = 0, (1)

were θµν is a constant, real, antisymmetric matrix. The
non-commutativity scale ΛNC is fixed by choosing dimen-
sionless matrix elements cµν = Λ2

NC θµν of order one. The
original motivation to study such a scenario was the hope
that the introduction of a fundamental scale could deal

a e-mail: wess@theorie.physik.uni-muenchen.de
b e-mail: desh@oregon.uoregon.edu
c e-mail: gorand@thphys.irb.hr
d e-mail: p.schupp@iu-bremen.de
e e-mail: josip.trampetic@cern.ch

with the infinities of quantum field theory in a natural
way. The simple commutation relation (1) with constant
θµν fails to provide a complete regularization [2], but more
complicated non-commutative structures can indeed intro-
duce spacetime lattice structures into the theory that are
compatible with a deformation of continuous spacetime
symmetries (see, e.g., [3]). This is in contrast to the situ-
ation in ordinary lattice field theory, where only discrete
translation symmetries survive. Aside from these technical
merits, the possibility of a non-commutative structure of
spacetime is of interest in its own right and its experimen-
tal discovery would be a result of fundamental importance.

Non-commutative gauge theory has become a focus of
interest in string theory and M-theory with the work given
in [4]. Non-commutativity of spacetime is very natural in
string theory and can be understood as an effect of the
interplay of closed and open strings. The commutation
relation (1) enters in string theory through the Moyal–
Weyl star product

f � g =
∞∑

n=0

θµ1ν1 · · · θµnνn

(−2i)nn!
∂µ1 . . . ∂µnf · ∂ν1 . . . ∂νng. (2)

For the coordinates we have xµ � xν − xν � xµ = iθµν . The
tensor θµν is determined by a NS Bµν-field and the open
string metric Gµν [5], which both depend on a given closed
string background. The effective physics on D-branes is
most naturally captured by non-commutative U(N) gauge
theory, but it can also be described by ordinary gauge the-
ory. Both descriptions are related by the Seiberg–Witten
(SW) map [6], which expresses non-commutative gauge
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fields in terms of fields with ordinary “commutative”
gauge transformation properties.

Quantum field theory on non-commutative spacetime
can be studied also independently of string theory. There
are two major approaches. The original one based on ac-
tions that resembles that of Yang–Mills theory with ma-
trix multiplication replaced by the Moyal–Weyl star prod-
uct and a more recent one that utilizes the so-called
Seiberg–Witten map to express non-commutative fields in
terms of physical (commutative) fields. Both have their
advantages and limitations. In the original approach un-
usual non-perturbative effects like UV/IR mixing [7] can
be studied, but gauge theories are limited to the gauge
group U(N) in the fundamental representation. There are
also indications of more fundamental problems in the rig-
orous definition of the S-matrix. The second approach
treats non-commutativity strictly perturbatively via a
Seiberg–Witten map expansion in terms of θ. A major
advantage of the second approach is that models with any
gauge group – including the one of the standard model –
and any particle content can be constructed. Further prob-
lems that are solved in this approach include the charge
quantization problem of NC Abelian gauge theories and
the construction of covariant Yukawa couplings. The ac-
tion is manifestly gauge invariant. It is written in terms of
physical fields and their derivatives and should be under-
stood as an effective model describing non-commutative
effects in particle physics; see [8,9,17,10] and references
therein.

Experimental signatures of non-commutativity have
been discussed from the point of view of collider physics
[11–14] as well as low energy non-accelerator experiments
[14–16]. Two widely disparate sets of bounds on ΛNC can
be found in the literature: bounds of order 1011 GeV [15]
or higher [14], and bounds of a few TeV from colliders [11–
13]. All these limits rest on one or more of the following
assumptions, which may have to be modified:
(1) θ is constant across distances that are very large com-
pared with the NC scale;
(2) unrealistic gauge groups;
(3) non-commutativity down to low energy scales.

The decay of the Z-boson into two photons was pre-
viously considered in [14], where the authors rely on a
non-commutative U(1) model, i.e., not yet a bonafide non-
commutative model of the electroweak sector or the stan-
dard model.

There are two essential points in which NC gauge the-
ories differ from standard gauge theories. The first point
is the breakdown of Lorentz invariance with respect to
a fixed non-zero θµν background (which obviously fixes
preferred directions) and the other is the appearance of
new interactions (three-photon coupling, for example) and
the modification of standard ones. Both properties have a
common origin and appear in a number of phenomena.

The action of NC gauge theory resembles that of or-
dinary Yang–Mills theory, but with the star products in
addition to ordinary matrix multiplication. The general
form of the gauge-invariant action for gauge fields is [17]

Sgauge = −1
2

∫
d4xTr

1
G2 F̂µν � F̂µν . (3)

Here Tr is a trace and G is an operator that encodes the
coupling constants of the theory. Both will be discussed
in detail below. The NC field strength is

F̂µν = ∂µV̂ν − ∂ν V̂µ − i[V̂µ
�, V̂ν ] (4)

and V̂µ is the NC analog of the gauge vector potential.
The Seiberg–Witten maps are used to express the non-
commutative fields and parameters as functions of ordi-
nary fields and parameters and their derivatives. This au-
tomatically ensures a restriction to the correct degrees of
freedom. For the NC vector potential the SW map yields

V̂ξ = Vξ +
1
4
θµν{Vν , (∂µVξ + Fµξ)} + O (

θ2) , (5)

where Fµν ≡ ∂µVν − ∂νVµ − i[Vµ, Vν ] is the ordinary field
strength and Vµ is the whole gauge potential for the gauge
group GSM ≡ SU(3)C × SU(2)L × U(1)Y

Vµ = g′Aµ(x)Y +g

3∑
a=1

Bµ,a(x)T a
L +gs

8∑
b=1

Gµ,b(x)T b
S . (6)

It is important to realize that the choice of the repre-
sentation in the definition of the trace Tr has a strong
influence on the theory in the non-commutative case. The
reason for this is that, owing to the Seiberg–Witten map,
terms of higher than quadratic order in the Lie algebra
generators will appear in the trace. The choice of the trace
corresponds to a choice of the representation of the gauge
group. The adjoint representation would not lead to new
triple gauge boson interactions and, in particular, show no
triple-photon vertices [17,18]. This, however, would be an
ad hoc choice (unless we are discussing a GUT scenario).
Let us emphasize again that the action that we present
here should be understood as an effective theory.

From this point of view, all representations of gauge
fields that appear in the SM have to be considered in the
definition of the trace. Consequently, according to [17],
we choose a trace over all particles with different quan-
tum numbers in the model that have covariant derivatives
acting on them. In the SM, these are, for each generation,
five multiplets of fermions and one Higgs multiplet. The
operator G, which determines the coupling constants of
the theory, must commute with all generators (Y, T a

L , T b
S)

of the gauge group, so that it does not spoil the trace prop-
erty of Tr. This implies that G takes on constant values
g1, . . . , g6 on the six multiplets (Table 1 in [17]). The op-
erator G is in general a function of Y and the Casimir
operators of SU(2) and SU(3). However, because of the
special assignment of hypercharges in the SM it is possible
to express G solely in terms of Y .

The action up to linear order in θ allows new triple
gauge boson interactions that are forbidden in the SM
and has the following form:

Sgauge = −1
4

∫
d4x fµνfµν (7)

−1
2

∫
d4x Tr (FµνFµν) − 1

2

∫
d4x Tr (GµνGµν)
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+gs θρτ

∫
d4x Tr

(
1
4
GρτGµν − GµρGντ

)
Gµν

+g′3κ1θ
ρτ

∫
d4x

(
1
4
fρτfµν − fµρfντ

)
fµν

+g′g2κ2 θρτ

∫
d4x

3∑
a=1

[(
1
4
fρτF a

µν − fµρF
a
ντ

)
Fµν,a+ c.p.

]

+g′g2
s κ3 θρτ

∫
d4x

8∑
b=1

[(
1
4
fρτGb

µν − fµρG
b
ντ

)
Gµν,b+ c.p.

]
,

where c.p. means cyclic permutations in f . Here fµν , F a
µν ,

and Gb
µν are the physical field strengths corresponding to

the groups U(1)Y , SU(2)L, and SU(3)C , respectively. The
constants κ1, κ2, and κ3 are parameters of the model.
They are functions of 1/g2

i , (i = 1, ..., 6) and have the
following form:

κ1 = − 1
g2
1

− 1
4g2

2
+

8
9g2

3
− 1

9g2
4

+
1

36g2
5

+
1

4g2
6
,

κ2 = − 1
4g2

2
+

1
4g2

5
+

1
4g2

6
,

κ3 = +
1

3g2
3

− 1
6g2

4
+

1
6g2

5
. (8)

In order to match the SM action at zeroth order in θ, three
consistency conditions have been imposed in (7):

1
g′2 =

2
g2
1

+
1
g2
2

+
8

3g2
3

+
2

3g2
4

+
1

3g2
5

+
1
g2
6
,

1
g2 =

1
g2
2

+
3
g2
5

+
1
g2
6
,

1
g2
s

=
1
g2
3

+
1
g2
4

+
2
g2
5
. (9)

These three conditions together with the requirement that
1/g2

i > 0, define a three-dimensional pentahedron in the
six-dimensional moduli space spanned by 1/g2

1 , ..., 1/g2
6

1.
From the action (7) we extract the neutral triple gauge

boson terms which are not present in the SM Lagrangian.
In terms of the physical fields (A, Z, G) they are

Lγγγ =
e

4
sin 2θW KγγγθρτAµν (AµνAρτ − 4AµρAντ ) ,

Kγγγ =
1
2

gg′(κ1 + 3κ2); (10)

LZγγ =
e

4
sin 2θW KZγγ θρτ [2Zµν (2AµρAντ − AµνAρτ )

+ 8ZµρA
µνAντ − ZρτAµνAµν ] ,

KZγγ =
1
2

[
g′2κ1 +

(
g′2 − 2g2

)
κ2

]
; (11)

LZZγ = LZγγ(A ↔ Z),

1 In terms of the couplings gi these are complicated equations
describing a family of hyper ellipsoids, however, in terms of
1/g2

i they form a set of linear equations

-0.6
-0.4

-0.2

0

KΓΓΓ

-0.3 -0.2 -0.1 0 0.1

KZΓΓ

-0.2

0

0.2

KZgg

.4

-0.2

0

Fig. 1. The three-dimensional pentahedron that bounds
possible values for the coupling constants Kγγγ , KZγγ and
KZgg at the MZ scale. The vertices of the pentahedron are
(−0.184, −0.333, 0.054), (−0.027, −0.340, −0.108), (0.129,
−0.254, 0.217), (−0.576, 0.010, −0.108), (−0.497, −0.133,
0.054), and (−0.419, 0.095, 0.217)

KZZγ =
−1
2gg′

[
g′4κ1 + g2

(
g2 − 2g′2

)
κ2

]
; (12)

LZZZ = Lγγγ(A → Z),

KZZZ =
−1
2g2

[
g′4κ1 + 3g4κ2

]
; (13)

LZgg = LZγγ(A → Gb),

KZgg =
g2
s

2

[
1 +

(
g′

g

)2
]

κ3; (14)

Lγgg = LZgg(Z → A),

Kγgg =
−g2

s

2

[
g

g′ +
g′

g

]
κ3, (15)

where Aµν ≡ ∂µAν − ∂νAµ, et cetera.
Figure 1 shows the three-dimensional pentahedron that

bounds allowed values for the dimensionless coupling con-
stants Kγγγ , KZγγ and KZgg. For any chosen point within
the pentahedron in Fig. 1 the remaining three coupling
constants (12), (13) and (15), i.e. KZZγ , KZZZ and Kγgg

respectively, are uniquely fixed by the NCSM. This is
true for any combination of three coupling constants from
(10)–(15).

Experimental evidence for non-commutativity coming
from the gauge sector should be searched for in processes
which involve the above vertices. The simplest and most
natural choice are the Z → γγ, gg decays, allowed for
real (on-shell) particles. All other simple processes, such
as γ → γγ, gg, and Z → Zγ, ZZ, are on-shell forbid-
den by kinematics. The Z → γγ, gg decays are strictly
forbidden in the SM by angular momentum conservation
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and Bose statistics (Yang theorem) [19,20]; therefore, they
both could serve as a clear signal for the existence of space-
time non-commutativity2.

The Z → γγ process has a tiny SM background from
the rare Z → π0γ, ηγ decays. At high energies, the two
photons from the π0 or η decay are too close to be sepa-
rated and they are seen in the electromagnetic calorimeter
as a single high energy photon [21]. The SM branching ra-
tios for these rare decays are of order 10−11 to 10−10 [22].
This is much smaller than the experimental upper bounds
which are of order 10−5 for the all three branching ratios
(Z → γγ, π0γ, ηγ) [23]. The experimental upper bound,
obtained from the e+e− → γγ annihilation, for ΓZ→γγ is
< 1.3 × 10−4 GeV [23].

The Z → gg decay mode should be observed in Z →
2 jets processes. However, it could be smothered by the
strong Z → qq̄ background, i.e. by hadronization, which
also contains NC contributions. Since the hadronic width
of the Z is in good agreement with the QCD corrected
SM, the Z → gg can at most be a few percent. Taking
into account the discrepancy between the experimentally
observed hadronic width for the Z-boson and the theoret-
ical estimate based on the radiatively corrected SM, we
estimate the upper bound for any new hadronic mode,
like ΓZ→gg, to be ∼ 10−3 GeV [23].

We now derive the partial widths for the Z(p) →
γ(k) γ(k′) decay. Care has to be taken when one tries
to compute matrix elements in NCGFT. In our model,
the in and out states can be taken to be ordinary com-
mutative particles. Quantization is straightforward to the
order in θ that we have considered; Feynman rules can
be obtained either via the Hamiltonian formulation or di-
rectly from the Lagrangian; a rather convenient property
of the action, relevant to computations, is its symmetry
under ordinary gauge transformations in addition to non-
commutative ones.

From the Lagrangian LZγγ , it is easy to write the
gauge-invariant amplitude MZ→γγ in momentum space.
Since we are dealing with a SM forbidden process, this is
essentially done using a distorted wave Born approxima-
tion. It gives∑

spins

|MZ→γγ |2 = −θ2 +
8

M2
Z

(pθ2p) − 16
M4

Z

(kθk′)2 . (16)

From above equation and in the Z-boson rest frame,
the partial width of the Z → γγ decay is

ΓZ→γγ =
α

12
M5

Z sin2 2θWK2
Zγγ

[
7
3
(�θT)2 + (�θS)2

]
, (17)

where �θT = {θ01, θ02, θ03} and �θS = {θ23, θ13, θ12}, are
responsible for time-space and space–space non-commuta-
tivity, respectively. This result differs essentially from that
given in [14] where the ΓZ→γγ partial width depends only
on time-space non-commutativity.

2 The Z and γ self-couplings vanish identically in the SM if
all particle are on-shell. They can, however, appear if one of the
photons is considered an off-shell particle in the s-channel [20]
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Fig. 2. The allowed region for KZγγ and KZgg at
the MZ scale, projected from the pentahedron given in
Fig. 1. Note that Kγγγ is non-zero at the point where
both KZγγ and KZgg vanish. The vertices of the poly-
gon are (−0.254, 0.217), (−0.333, 0.054), (−0.340, −0.108),
(0.010, −0.108) and (0.095, 0.217)

For the Z-boson at rest and polarized in the direction
of the 3-axis, we find that the polarized partial width is

ΓZ3→γγ =
α

4
M5

Z sin2 2θW K2
Zγγ (18)

×
[
2
5

(
(θ01)2 + (θ02)2

)
+

23
15

(θ03)2 + (θ12)2
]

.

In the absence of time-space non-commutativity a sophis-
ticated, sensibly arranged polarization experiment could
in principal determine the vector of �θS. The NC structure
of spacetime may depend on the matter that is present.
In our case it is conceivable that the direction of �θT,S may
be influenced by the polarization of the Z particle. In this
case, our result for the polarized partial width is particu-
larly relevant.

Due to the same Lorentz structure of the Lagrangians
LZγγ and LZgg we find

ΓZ→gg

ΓZ→γγ
=

ΓZ3→gg

ΓZ3→γγ
= 8

K2
Zgg

K2
Zγγ

. (19)

The factor of eight in the above ratios is due to color.
In order to estimate the NC parameter from upper

bounds Γ exp
Z→γγ<1.3×10−4 GeV and Γ exp

Z→gg<1×10−3 GeV
[23] it is necessary to determine the range of couplings
KZγγ and KZgg. The allowed region for the coupling con-
stants KZγγ and KZgg is given in Fig. 2. Since KZγγ and
KZgg could be zero simultaneously it is not possible to
extract an upper bound on θ only from the above experi-
mental upper bounds alone.

We need to consider an extra interaction from the
NCSM gauge sector, namely the triple-photon vertex, to
estimate θ. The important point is that the triplet of cou-
pling constants Kγγγ , KZγγ and KZgg, as well as the pair
of couplings Kγγγ and KZγγ can never vanish simultane-
ously due to the constraint set by the value of the SM
coupling constants at the weak interaction scale. This can
be seen from the pentahedron in Fig. 1. In conclusion, it
is possible to estimate θ from the NCSM gauge sector
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Fig. 3. The allowed region for KZγγ and Kγγγ at the MZ

scale, projected from the pentahedron given in Fig. 1. The ver-
tices of the polygon are (−0.333, −0.184), (−0.340, −0.027),
(−0.254, 0.129), (0.095, −0.419), (0.0095, −0.576), and
(−0.133, −0.497)
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Fig. 4. The allowed region for Kγγγ and KZgg at
the MZ scale, projected from the pentahedron given in
Fig. 1. Note that KZγγ is non-zero at the point where
both Kγγγ and KZgg vanish. The vertices of the poly-
gon are (−0.108, −0.576), (−0.108, −0.027), (0.217, 0.129),
(0.217, −0.419), and (0.054, −0.497)

through a combination of various types of processes con-
taining the γγγ and Zγγ vertices. These are processes
of the type 2 → 2, such as e+e− → γγ, eγ → eγ, and
γγ → e+e− in leading order. The analysis has to be car-
ried out in the same way as in [12]. Theoretically consis-
tent modifications of relevant vertices are, however, nec-
essary. Finally, we present the allowed region for the pair
of couplings Kγγγ and KZgg in Fig. 4. Note that Figs. 2–4
represent projections of pairs of coupling constants from
the three-dimensional pentahedron spanned by the con-
stants Kγγγ , KZγγ and KZgg.

The structure of our main results (16) to (19) remains
the same for SU(5) and SU(3)C ×SU(3)L×SU(3)R GUTs
that embed the NCSM that is based on the SW map [24,
18]; only the coupling constants change. Note that in the
particular case of an SO(10) GUT there is no triple gauge
boson coupling [18].

In this article we have proposed two SM strictly for-
bidden decay modes, namely, Z → γγ, gg, as a possible
signature of the NCSM. The experimental discovery of
Z → γγ, gg decays would certainly indicate a violation of
the presently accepted SM and the definitive appearance
of new physics.

In conclusion, the gauge sector of the non-minimal
NCSM is an excellent place to discover spacetime non-
commutativity experimentally [25–29], but not the best
place to find bounds that exclude it. We hope that the
importance of a possible discovery of non-commutativity
of spacetime will convince experimentalists to look for SM
forbidden decays in the gauge sector. A good reason for
this is that the sensitivity to the non-commutative param-
eter θµν could be in the range of the next generation of
linear colliders with a c.m.e. around a few TeV.
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